• 地埋式一体化A2O污水处理设备

    详细信息

     品牌:鲁盛  加工定制:否  污水处理量:0.5 m3/h 
     型号:wsz  功率:3 kw  
    地埋式一体化A2O污水处理设备
    污水设备厂家——鲁盛环保。
    公司生产多种污水处理设备,其中*产品有:地埋式一体化污水处理设备、气浮机、二氧化氯发生器、加药装置、高效絮凝沉淀设备、叠螺污泥脱水机、机械格栅、板框压滤机等。
    买设备即送货到现场、派技术人员上门安装。

    生物流化床内装有特种悬浮状可流化性生物载体,载体利用流体动力学原理使其悬浮流化,溶气水释放的微气泡吸附在载体上,向好氧微生物提供充足的溶解氧。在特定条件下,污水作为微生物培养基,培养出微生物菌群,形成以*适宜增殖的微生物为中心,与多种多样生物相结合的一个生态系,并吸附凝聚大量的微生物菌胶体,固定在悬浮载体上,溶解性有机质在好氧微生物作用下,促进有机质的生化分解进程,使有机质转化成无机质。
    A/OWH工艺与除磷脱氮
    因为好氧生物无法彻底去除污水中的磷和氮,在设计污水处理方案时,一定要分别选用厌氧与好氧工艺(A/O或A2/O)相搭配,并要求一定的回流比,这样必然导致水力停留时间长,而且难以控制厌氧生物和好氧生物之间的动态平衡,无法消除磷的释放与吸收之间的时间差。A/OWH工艺是指在同一装置内混合存在两种相同密度、其它物理特性不同的生物载体,使其分别适合厌氧微生物和好氧微生物的生长条件,由于A/O混合,厌氧与好氧同步进行。厌氧载体具有*的比表面积,工作时载体表面首先凝聚着好氧生物,并由里向外逐渐堵塞载体空间,形成一个硕大的封闭式的生物团,这时外部溶解氧无法渗透进去,造成生物团内部厌氧环境,在生物团中心好氧生物逐步被厌氧生物所替代,厌氧生物活性不断增强,同样,厌氧菌从里向外逐渐分解掉生物团内部被包裹的有机质,直到整个菌胶体从载体上脱落。然后,随着载体的悬浮运动及流体的推动力,包裹在里面的水质与外部的水质自动交换,重复A/O交替过程。A/OWH工艺就是利用除磷菌在厌氧条件下释放磷,在好氧条件下吸收磷的多次交替过程,从而达到生物除磷的目的。同样氨氮在有氧存在的环境下,通过生物硝化过程将污水中的有机氮和氨氮氧化为硝态氮,在缺氧环境下通过生物的硝化过程将硝态氮还原为氮气从水中逸出,部份氨氮被微生物新陈代谢所利用而变成细胞组成部份,并逐渐老化转变成剩余污泥从系统中排出。
    重力过滤法
    污水经生化和物化的共同作用,溶解性有机物和比重较轻的悬浮物得到彻底去除,部份比重较大、难分解的固体物仍存在水中,PS型生物流化床污水处理设备利用流化区出水的重力流过滤,过滤时以石英砂(或纤维球、活性炭、过滤膜等)截留水中固体杂质或菌胶体,反洗时水流逆向通过滤料层,使滤料层膨胀悬浮,借水流剪切和颗粒滤料间的碰撞摩擦力清洗滤料层,过滤和反洗两个过程交替进行,从而使水*终获得澄清。

    兼具好氧与厌氧的悬浮填料(AOF复合填料)
    A/OWH工艺关键是使用兼具好氧与厌氧的悬浮复合填料,该种复合填料其外壳象多面空心球体,内部空间设置有呈放射状纤维体,复合后的平均比重为1.03-1.05g/cm3,使用过程中,比重能随着污水密度的变化而变化,该填料同时生长着好氧微生物和厌氧微生物,形似一个巨大的生物团,既可以进行有机物的好氧分解、氧化物的硝化、磷的吸收,又可以进行厌氧水解、酸化、反硝化以及磷的释放等一系列过程,从而使硝化、反硝化、磷的吸收和释放之间保持动态平衡,消除两者之间的时间差,由于填料呈微观状态独立悬浮在污水中,形成无数个微型多相生物反应器,在运行过程中,好氧与厌氧交替进行、往复循环,并在气水流的带动下,慢慢旋转调整状态,内外水体互相交换,生物污泥自动脱落,该填料充填率为80%,在单位体积内具有很高的生物量,生物高度浓缩,耐冲击负荷及降阶有机物能力极强。
    纤维转盘滤池是目前世界上*先进的过滤器之一,目前在全世界已经有700个污水厂采用该项技术。滤布转盘过滤器的处理效果好,出水水质高,设备运行稳定,拥有目前世界上唯一公认的中水回用证书-Title22证书。
    纤维转盘滤池主要用于冷却循环水处理、废水的深度处理后回用。作为冷却水、循环水过滤后回用:进水水质SS≤80mg/L以下,出水水质SS≤10mg/L。 用于污水的深度处理,设置于常规活性污泥法、延时曝气法、SBR系统、氧化沟系统、滴滤池系统、氧化塘系统之后,可用于以下领域: ①去除总悬浮固体②结合投加药剂可去除磷 ③可去除重金属等。 滤布转盘过滤器用于过滤活性污泥终沉池出水,设计水质:进水SS:30mg/L(*高可承受80-100mg/L),出水SS≤5mg/L,浊度≤2 NTU,实际运行出水更优质,一般出水浊度在1左右。
    滤布转盘过滤器与常规滤池相比的特点 :
    (1)出水水质好并且稳定。滤布转盘过滤器是采用滤盘外包滤布来代替传统滤池的砂滤料,滤布孔径很小,可截留粒径为几微米(μm)的微小颗粒,因此出水水质及出水稳定性都优于粒料滤池。而常规滤池冲洗前因穿透问题水质较差,冲洗后会因滤层中残存的清洗水对出水有影响。另外过滤的水量也随阻力的变化而变化。
    (2)设计新颖,耐冲击负荷。滤布转盘过滤器相当于是滤池及沉淀池的结合,具有排泥的功能。颗粒大的污泥直接沉淀到斗形池底,不会堵塞滤布,即不像普通滤池:所有的悬浮物(SS)都必须经过滤料。因此过滤周期长,清洗间隔长,而且可承受的水力负荷及污泥负荷也远远大于常规砂滤池,悬浮物(SS)负荷相当于普通砂滤池的1.5倍,滤速比普通滤池增加50%。因此滤布转盘过滤器更耐高悬浮物浓度和大颗粒悬浮物的冲击。
    (3)设备简单紧凑,附属设备少,整个过滤系统的投资低。滤布转盘过滤器清洗时可连续过滤。而砂滤池反冲洗时不能连续过滤,为保证连续,需要在砂滤池前设中间储水池或采用多台滤池交替工作。滤布转盘过滤器采用小型水泵负压抽吸滤后水自动清洗,省去许多传统滤池需要的反冲洗水池、水塔等。传统滤池因反冲洗强度大,气水反冲不仅需要大功率水泵、鼓风机,还有气水两套较大直径的管阀系统。整套系统多而杂,投资高。自动控制系统极为庞大复杂。

    (4)设备闲置率低,总装机功率低。由于滤布较薄,非常容易冲洗干净,清洗非常高效,清洗时,清洗滤盘的面积只相当于整个滤盘面积的1%。清洗的特点是频繁但清洗历时短(1次/60-120分,1分钟/次)。总体的清洗水量也较少。而传统滤池的气水反冲洗水泵和鼓风机的设备多、自动阀门大而多、功率大,且闲置率高。
    (5)运行自动化,因而运行和维护简单、方便。过滤过程由计算机控制,可调整负压抽吸清洗过程及排泥过程的间隔时间及过程历时。基本不需专人维护管理。 滤布转盘过滤器的检修量小。滤布转盘过滤器机械设备较少,泵及电机间歇运行,滤布磨损较小,滤布易于更换,假如由于某些原因造成滤布堵塞,可轻易更换滤布。对于砂滤池而言,若滤料堵塞,则需要很大的清洗工作量。而且砂滤更换滤料非常困难。
    (6)水头损失比砂滤池小很多。滤布转盘过滤器一般为0.2m,而砂滤池的水头损失一般为1.5m多。砂滤罐的水头损失则高于5m,能量损失大,增加运行费用。
    (7)占地面积比其他滤池小很多。由于滤盘垂直中空管设计,使小的占地面积可保证大的过滤面积,从而减少了池容,减少了材料量及土方量,显著降低了工程造价。日处理1万吨的滤池,占地面积不大于20平方米,高度3.3m。对于技术改造,可以解决空间不够的困难。
    地埋式一体化A2O污水处理设备水解过程是指复杂的固体有机物在水解酶的作用下被转化为简单的溶解性单体或二聚体。微生物无法直接代谢碳水化合物(如淀粉、木质纤维素等)、蛋白和脂肪等生物大分子,必须先降解为可溶性聚合物或者单体化合物才能被酸化菌群利用。淀粉在淀粉酶作用下被水解成麦芽糖、葡萄糖和糊精。纤维素是由糖苦键结合成纤维二糖再聚合而成的,在多种纤维素酶的协同作用下水解成糖。由于自然状态下的纤维素一般都与木质素结合成高度聚合状态,以抵抗微生物的分解,所以纤维素降解是沼气发酵限速步骤之一。蛋白质是植物合成的一种重要产物,它在蛋白酶作用下肽键断裂生成二肽和多肽,再生成各种氨基酸。脂肪首先在脂肪水解酶的作用下水解为长链脂肪酸及甘油,甘油在甘油激酶催化下生成怜酸甘油,继而被氧化为怜酸二轻丙酮,再经异构化生成磷酸甘油酸,经糖酵解途径转化为丙酮酸,*终进入糖酵解途径实现彻底氧化及利用。
    2、酸化阶段
    产酸发酵过程是指将溶解性单体或二聚体形式的有机物转化为以短链脂肪酸或醇为主的末端产物。这些水解成的单体会进一步被微生物降解成挥发性脂肪酸、乳酸、醇、氨等酸化产物和氢、二氧化碳,并分泌到细胞外。产酸菌是一类快速生长的细菌,它们倾向于生产乙酸,这样能获取*高的能量以维持自身生长。末端产物组成取决于灰氧降解条件、底物种类和参与生化反应的微生物种类同时氨基酸的降解首先通过氧化还原氮反应实现脱氨基作用,生成有机酸、氢气及二氧化碳。
    3、产氢产乙酸阶段
    该阶段主要是将水解产酸阶段产生的两个碳以上的有机酸或醇类等物质,转化为乙酸、和等可为甲烷菌直接利用的小分子物质的过程。标准情况下,有机酸的产氢产乙酸过程不能自发进行,氢气会抑制此步反应的进行,降低系统的氢分压有利于产物产生。如果氢分压超过大气压,有机酸浓度增大,甲烷产量受到抑制。避免氢气在此阶段的积累尤其重要。在厌氧过程中,氢分压的降低必须依靠氢营养菌来完成。
    4、甲烷化阶段
    产甲烷阶段是由严格专性厌氧的产甲烷细菌将乙酸、一碳化合物和H2、CO2等转化为CH4和CO2的过程。大约的甲烷来自于乙酸的分解,是由乙酸歧化菌通过代谢乙酸盐的甲基基团生成,剩下的28%由CO2和H2合成。产甲烷细菌的代谢速率一般较慢,对于溶解性有机物厌氧消化过程,产甲烷阶段是整个厌氧消化工艺的限速。
    水解(酸化)池与厌氧反应器的区别
    从原理上讲,水解(酸化)是厌氧消化过程的第yi、二两个阶段但水解(酸化)工艺和厌氧消化追求的目标不同,因此是截然不同的处理方法。
    水解(酸化)系统中的的目的主要是将原水中的非溶解态有机物转变为溶解态有机物,特别是工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。考虑到后续好氧处理的能耗问题,水解(酸化)主要用于低浓度难降解废水的预处理。在混合厌氧消化系统中,水解酸化是和整个消化过程有机地结台在一起,共处于一个反应器中,水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的*佳环境,同时,产酸相对所产生的酸的形态也有要求(主要为乙酸)。此外,废水中如含有高浓度的硝咳盐、亚硝酸盐、硫酸盆、亚硫酸盐时,这些物质及其转化产物不仅对甲烷苗有毒,而且影响沼气的质量,也在产酸相中予以去除。因此,尽管水解(酸化)一好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生有机酸,但由于三者的处理目的不同,各自的运行环境和条件存在着明显的差异,主要表现在以下几个方面:
    (1)Eh不同
    在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一反应器中,整个反应器的氧化还原电位Eh的控制必须首先满足对Eh要求严格的甲烷菌,一般为一300mV以下,因此。系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在一100mV一一300mV之间。据研究,水解(酸化)一好氧处理工艺中的水解(酸化)段为——典型的兼性过程,只要置Eh控制在+50mv以下,该过程即可顺利进行。
    (2)pH值不同
    在混合厌氧消化系统中,消化液的pH值控制在甲烷菌生氏的*佳pH范围,一般为6.8—7.2。而在两相厌氧消化系统中,产酸相的pH值一般控制在6.o一6.5之间,pH降低时,尽管产酸的速率增大,但形成的有机酸形态将发生变化,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌会产生强烈的抑制作用。对于水解(酸化)一好氧处理系统来说,由于后续处理为好氧氧化,不存在丙酸的抑制问题,因此,控制的pH范围也较宽,从而可获得较高的水解(酸化)速率,一般pH维持在5.5—6.5之间。
  • 留言

    *详细需求:
    *手  机:
    联 系 人:
    电    话:
    E-mail:
    公  司:
    谷瀑服务条款》《隐私政策
主营产品:体化污水处理设备,生活污水处理设备,地埋式一体化污水设备,医院污水处理设备,MBR污水处理设备
潍坊鲁盛水处理设备有限公司 电话:13070717631 地址: 东风西街
内容声明:谷瀑为第三方平台及互联网信息服务提供者,谷瀑(含网站、客户端等)所展示的商品/服务的标题、价格、详情等信息内容系由店铺经营者发布,其真实性、准确性和合法性均由店铺经营者负责。谷瀑提醒您购买商品/服务前注意谨慎核实,如您对商品/服务的标题、价格、详情等任何信息有任何疑问的,请在购买前通过谷瀑与店铺经营者沟通确认;谷瀑上存在海量店铺,如您发现店铺内有任何违法/侵权信息,请在谷瀑首页底栏投诉通道进行投诉。