医院废水处理系统----鲁盛环保公司
污水处理设备我们更*---*污水处理十余年
----完善的售后服务体系
----上千家客户共同见证的品质
如果您想要省钱、省心、省力的好设备,就来我们鲁盛找逄总 吧!
主要优点
与废水的好氧生物处理工艺相比,废水的厌氧生物处理工艺具有以下主要优点:
① 能耗大大降低,而且还可以回收生物能(沼气);因为厌氧生物处理工艺无需为微生物提供氧气,所以不需要鼓风曝气,减少了能耗,而且厌氧生物处理工艺在大量降低废水中的有机物的同时,还会产生大量的沼气,其中主要的有效成分是甲烷,是一种可以燃烧的气体,具有很高的利用价值,可以直接用于锅炉燃烧或发电;
② 污泥产量很低;这是由于在厌氧生物处理过程中废水中的大部分有机污染物都被用来产生沼气——甲烷和二氧化碳了,用于细胞合成的有机物相对来说要少得多;同时,厌氧微生物的增殖速率比好氧微生物低得多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。
③ 厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;因此,对于某些含有难降解有机物的废水,利用厌氧工艺进行处理可以获得更好的处理效果,或者可以利用厌氧工艺作为预处理工艺,可以提高废水的可生化性,提高后续好氧处理工艺的处理效果。
但是,当进入上世纪50、60年代,特别是70年代的中后期,随着世界范围的能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得以强化,相继出现了一批被称为现代高速厌氧消化反应器的处理工艺,从此厌氧消化工艺开始大规模地应用于废水处理,真正成为一种可以与好氧生物处理工艺相提并论的废水生物处理工艺。这些被称为现代高速厌氧消化反应器的厌氧生物处理工艺又被统一称为“第二代厌氧生物反应器”,它们的主要特点有:① HRT大大缩短,有机负荷大大提高,处理效率大大提高;② 主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;③ HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。以上这些特点彻底改变了原来人们对厌氧生物过程的认识,因此其实际应用也越来越广泛。
进入20世纪90年代以后,随着以颗粒污泥为主要特点的UASB反应器的广泛应用,在其基础上又发展起来了同样以颗粒污泥为根本的颗粒污泥膨胀床(EGSB)反应器和厌氧内循环(IC)反应器。其中EGSB反应器利用外加的出水循环可以使反应器内部形成很高的上升流速,提高反应器内的基质与微生物之间的接触和反应,可以在较低温度下处理较低浓度的有机废水,如城市废水等;而IC反应器则主要应用于处理高浓度有机废水,依靠厌氧生物过程本身所产生的大量沼气形成内部混合液的充分循环与混合,可以达到更高的有机负荷。这些反应器又被统一称为“第三代厌氧生物反应器”。
二、厌氧生物处理的主要特征
医院废水处理系统---- 逄总
三、厌氧生物处理技术是我国水污染控制的重要手段
我国高浓度有机工业废水排放量巨大,这些废水浓度高、多含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物;我国当前的水体污染物还主要是有机污染物以及营养元素N、P的污染;目前的形势是:能源昂贵、土地价格剧增、剩余污泥的处理费用也越来越高;厌氧工艺的突出优点是:① 能将有机污染物转变成沼气并加以利用;② 运行能耗低;③ 有机负荷高,占地面积少;④ 污泥产量少,剩余污泥处理费用低;等等;厌氧工艺的综合效益表现在环境、能源、生态三个方面。
四、厌氧消化过程中沼气产量的估算
糖类、脂类和蛋白质等有机物经过厌氧消化能转化为甲烷和CO2等气体,这样的混合气体统称为沼气(Biogas);产生沼气的数量和成分取决于被消化的有机物的化学组成,一般可以用下式进行估算:
理论上认为,1gCOD在厌氧条件下完全降解可以生成0.25 gCH4,相当于标准状态下的甲烷气体体积为0.35L;沼气中CO2和CH4的百分含量不仅与有机物的化学组成有关,还与其各自的溶解度有关;由于一部分沼气(主要是其中的CO2)会溶解在出水中而被带走,同时,一小部分有机物还会被用于微生物细胞的合成,所以实际的产气量要比理论产气量小。
早期的厌氧生物反应器
这是厌氧消化应用于废水处理的初级阶段,是从1881年法国Mouras设计的自动净化器开始到本世纪的20年代;主要代表有:① 1881年法国Mouras的自动净化器:② 1891年英国Moncriff的装有填料的升流式反应器:③ 1895年,英国设计的化粪池(Septic Tank);④ 1905年,德国的Imhoff池(又称隐化池、双层沉淀池);等等。
这些早期的厌氧生物反应器的共同特点是:
① 处理废水的同时,也处理从废水中沉淀下来的污泥;
② 前几种构筑物由于废水与污泥不分隔而影响出水水质;
③ 双层沉淀池则有了很大改进,有上层沉淀池和下层消化池;
④ 停留时间很长,出水水质也较差;
⑤ 后两种反应器曾在英、美、德、法等国得到广泛推广,在我国目前仍有应用。
厌氧消化池
随着活性污泥法、生物滤池等好氧生物处理工艺的开发和推广应用,厌氧生物处理被认为是效率低、HRT长、受温度等环境条件的影响大,因此处于一种被遗弃的状态;但好氧生物处理工艺的广泛应用,产生的剩余污泥也越来越多,其稳定化处理的主要手段是厌氧消化,这是第二阶段的主要特征;1927年,首次在消化池中加上了加热装置,使产气速率显著提高;随后,又增加了机械搅拌器,反应速率进一步提高;50年代初又开发了利用沼气循环的搅拌装置;带加热和搅拌装置的消化池被称为高速消化池,至今仍是城市污水处理厂中污泥处理的主要技术。
一、消化池的类型与构造
厌氧消化池主要应用于处理城市污水厂的污泥,也可应用于处理固体含量很高的有机废水;它的主要作用是:① 将污泥中的一部分有机物转化为沼气;② 将污泥中的一部分有机物转化成为稳定性良好的腐殖质;③ 提高污泥的脱水性能;④ 使得污泥的体积减少1/2以上;⑤ 使污泥中的致病微生物得到一定程度的灭活,有利于污泥的进一步处理和利用。
1、消化池的分类:
消化池可以按其形状分为:圆柱形、椭圆形(卵形)和龟甲形等几种形式;也可以按其池顶结构形式的不同将其分为:固定盖式和浮动盖式的消化池;或者还可以按其运行方式的不同分为:传统消化池和高速消化池。
1) 传统消化池:
传统消化池又称为低速消化池,在池内没有设置加热和搅拌装置,所以有分层现象,一般分为浮渣层、上清液层、活性层、熟污泥层等,其中只有在活性层中才有有效的厌氧反应过程在进行,因此在传统消化池中只有部分容积有效;传统消化池的*大特点就是消化反应速率很低,HRT很长,一般为30~90天。
2) 高速消化池
与传统消化池不同的是,在高速消化池中设有加热和/或搅拌装置,因此缩短了有机物稳定所需的时间,也提高了沼气产量,在中温(30~35C)条件下,其HRT可以为15天左右,运行效果稳定;但搅拌使高速消化池内的污泥得不到浓缩,上清液与熟污泥不易分离。
3) 两级串联消化池
两级串联,*级采用高速消化池,第二级则采用不设搅拌和加热的传统消化池,主要起沉淀浓缩和贮存熟污泥的作用,并分离和排出上清液;二者的HRT的比值可采用1 : 1~1 : 4,一般为1 : 2。
医院废水处理系统------- 逄总2、消化池的构造
消化池一般由池顶、池底和池体三部分组成;消化池的池顶有两种形式,即固定盖和浮动盖,池顶一般还兼做集气罩,可以收集消化过程中所产生的沼气;消化池的池底一般为倒圆锥形,有利于排放熟污泥。
1) 消化池内的搅拌:
在高速消化池内均设有搅拌装置,可以分为机械搅拌和沼气搅拌两种形式。其中的机械搅拌又分为:① 泵搅拌:从池底抽出消化污泥,用泵加压后送至浮渣层表面或其它部位,进行循环搅拌,一般与进料和池外加热合并一起进行;② 螺旋浆搅拌:在一个竖向导流管中安装螺旋桨;③ 水射器搅拌:利用污泥泵从消化池中抽取污泥后通过水射器喷射进入消化池,可以起到循环搅拌的作用。而沼气搅拌又可以分为:① 气提式搅拌;② 竖管式搅拌;③ 气体扩散式搅拌。
2) 消化池内的加热:
在高速消化池内一般需要将反应温度控制在中温范围内,即约为35C左右,因此必须考虑对进入消化池的污泥或直接在消化池内部进行加热。消化池内的加热方式主要有:① 池内蒸汽直接加热,其优点是设备简单,但容易造成局部污泥过热,会影响厌氧微生物的正常活动,而且蒸气直接通入池内会增加污泥的含水率;② 池外加热:将进入消化池的污泥预热后再投配到消化池中,所需预热的污泥量较少,易于控制;预热温度较高,有利于杀灭虫卵;不会对厌氧微生物不利;但设备较复杂。
二、消化池的设计计算
消化池的设计计算的主要内容包括:① 消化池体积的计算与池体设计;② 消化池内搅拌设备的设计与计算;③ 消化池所需要的加热保温系统的设计与计算;等。
1、消化池的池体设计
目前,国内一般按污泥投配率来计算所需的消化池容积,即:
式中:V——消化池的有效容积,m3;
V’——每天需要处理的新鲜污泥的统计,m3/d;
p——污泥投配率。
一般当采用高速消化池来处理来自城市生活污水处理长的剩余污泥时,在消化温度为30~35C时,投配率p可取6~18%;在实际工程中,一般要求消化池不少于2个,以便轮流检修。
而国外则多按固体负荷率来计算消化池的有效容积,即:
式中:Gs——每日需要处理的污泥干固体量,kgVSS/d;
Lv——单位容积消化池固体负荷率,kgVSS/m3.d。
一般认为固体负荷率Lv值与污泥的含固率、消化池内的反应温度等有关,下表中的数据可供参考:
污泥含固率(%) 固体负荷率(kgVSS/m3.d)
24C 29C 33C 35C
4 1.53 2.04 2.55 3.06
5 1.91 2.55 3.19 3.83
6 2.30 3.06 3.83 4.59
7 2.68 3.57 4.46 5.36
2、消化池的结构尺寸
在确定了所需的消化池的有效容积后,就可计算消化池各部的结构尺寸,其一般要求如下:
① 圆柱形池体的直径一般为6~35m;
② 柱体高径之比为1:2;
③ 池总高与直径之比为0.8~1.0;
④ 池底坡度一般为0.08;
⑤ 池顶部的集气罩,高度和直径相同,一般为2.0m;
⑥ 池顶至少设两个直径为0.7m的人孔。
3、消化池的工艺管道
在消化池中还需要设置多种工艺管道,其中主要包括:① 污泥管:进泥管、出泥管、循环搅拌管;② 上清液排放管;③ 溢流管;④ 沼气管;⑤ 取样管;等。
三、沼气的收集与利用
污泥和高浓度有机废水进行厌氧消化时均会产生大量沼气;沼气的热值很高(一般为21000~25000 kJ/m3,即5000~6000 kCal/m3),是一种可利用的生物能源。
1、污泥消化过程中沼气产量的估算:
沼气成分:一般认为CH4 50~70%,CO2 20~30%,H2 2~5%,N2 ~10%,微量H2S等;沼气产率是指每处理单位体积的生污泥所产生的沼气量,即m3沼气/m3生污泥;产气率与污泥的性质、污泥投配率、污泥含水率、发酵温度等有关;当污泥来自城市污水处理厂,生污泥含水率为96%时:中温消化,投配率为6~8%,产气率可达10~12 m3沼气/m3生污泥;高温消化,投配率为6~8%,产气率可达22~26 m3沼气/m3生污泥;投配率为13~15%,产气率可达13~15 m3沼气/m3生污泥
2、沼气的收集:
在沼气管道沿程上应设置凝结水罐;注意安全;设置阻火器;为防止在冬季结冰引起堵塞,有时在沼气管上还应采取保温措施。
一、厌氧生物处理工艺的发展简史
实际上,厌氧生物过程广泛地存在于自然界中,但人类*次有意识地利用厌氧生物过程来处理废弃物,则是在1881年由法国的Louis Mouras所发明的“自动净化器”开始的,随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污泥(如各种厌氧消化池等)。这些厌氧反应器现在通称为“*代厌氧生物反应器”,它们的共同特点是:① 水力停留时间(HRT)很长,有时在污泥处理时,污泥消化池的HRT会长达90天,即使是目前在很多现代化城市污水处理厂内所采用的污泥消化池的HRT也还长达20~30天;② 虽然HRT相当长,但处理效率仍十分低,处理效果还很不好;③ 具有浓臭的气味,因为在厌氧消化过程中原污泥中含有的有机氮或硫酸盐等会在厌氧条件下分别转化为氨氮或硫化氢,而它们都具有十分特别的臭味。以上这些特点使得人们对于进一步开发和利用厌氧生物过程的兴趣大大降低,而且此时利用活性污泥法或生物膜法处理城市污水已经十分成功。
3、沼气的贮存与利用:
一般需要采用沼气柜来调节产气量与用气量之间的平衡;调节容积一般为日平均产气量的25~40%,即6~10h的产气量;注意防腐、防火。
主要缺点
与废水的好氧生物处理工艺相比,废水厌氧生物处理工艺也存在着以下的明显缺点:
① 厌氧生物处理过程中所涉及到的生化反应过程较为复杂,因为厌氧消化过程是由多种不同性质、不同功能的厌氧微生物协同工作的一个连续的生化过程,不同种属间细菌的相互配合或平衡较难控制,因此在运行厌氧反应器的过程中需要很高的技术要求;
② 厌氧微生物特别是其中的产甲烷细菌对温度、pH等环境因素非常敏感,也使得厌氧反应器的运行和应用受到很多限制和困难;
医院废水处理系统- 逄总③ 虽然厌氧生物处理工艺在处理高浓度的工业废水时常常可以达到很高的处理效率,但其出水水质仍通常较差,一般需要利用好氧工艺进行进一步的处理;
④ 厌氧生物处理的气味较大;
⑤ 对氨氮的去除效果不好,一般认为在厌氧条件下氨氮不会降低,而且还可能由于原废水中含有的有机氮在厌氧条件下的转化导致氨氮浓度的上升。
一、隔油器工作原理: 隔油器由三个槽组成。当厨房排水流入*槽时,杂物框将其中的固体杂物(菜叶等)截流除去乙进入第二槽后,利用密度差使油水分离。废水沿斜管向下流动,进入第三槽后从溢流堰流出,再经出水管收集排出。水中的油珠则沿斜管的上表面集聚向上流动,浮在隔油池的槽内,然后用集油管汇集排除,或人工排除。
三、隔油器特点:a)油水分离效率高,可去除油粒粒径在601lm以上的油珠;b)停留时间短,一般不大于30min;c)占地面—积小-/约占平流式隔油池的l/4(01-/3(处理水量相同时); d)臭气较少; 容量计算。
三格化粪池厕所的地下部分结构由便器、进粪管、过粪管、三格化粪池、盖板五部分组成。便器:由工厂加工生产或白行预制,便器采用直通式,与进粪管联接,也可使用水封式便器,不再安装近粪管。
进粪管:塑料、铸铁、水泥管均可,内壁光滑、防止结粪、内径为10cm,长度为30-50cm。过粪管:以塑料管为好,直径为10-15cm,1-2池间的过粪管长约70-75cm,2-3池间的过粪管长约50一55Cm。
三格池:用砖砌水泥粉壁面或水泥现浇,预制均可,以"目"字形为主要类型,若受地形限制,"品"字形、"丁"个型摆都也可。容积达到贮粪2个月为宜。三格池有效深度应不少于1 cm ,1至3格容积比例一般为2:1:3。
主要的组成部分:1.水解酸化池;2. 接触氧化池;3. 杂质沉淀池;4.消毒处理;5.污泥好氧消化池。
1. 水解酸化池
该工艺主要处理的就是对污水处理前进行预处理,将水中的废水进行一定的厌氧发酵,将污水的可生化性提高,这是对污水处理前比较重要的步骤,可以直接影响后期的污水处理的效率和处理时间,可以*大程度的提高污水处理的效率和减少消耗。
2. 接触氧化池
氧化池根据水处理的污染程度不同分为好几个等级,普通型和加强型。一般根据处理的时间进行判断。处理时间不大于四个小时就使用普通型的氧化池,处理时间在4-6小时之间的使用加强型的氧化池。主要是使用水解酸化池出水自流至接触氧化池进行生化处理。原污水中大部分有机物在此得到降解和净化,好氧菌以填料为载体,利用污水中的有机物为食料,将污水中的有机物分解成无机盐类,从而达到净化目的。好氧菌的生存,必须有足够的氧气,即污水中有足够的溶解氧,以达到生化处理的目的。好氧池空气由风机提供,池内采用新型弹性立体填料,该填料表面积比大、使用寿命长、易挂膜、耐腐蚀,池底采用旋混式曝气器,使溶解氧的转移率高,同时有重量轻、不老化、不易堵塞、使用寿命长等优点。接触池气水比在12:1左右。(0.5-5 m3/h接触池为二级)
一体化污水处理设备内部填料容易堵,钢制填料支架也容易锈蚀塌陷了。
一体化污水处理设备采用的是弹性填料、软性填料或者组合式填料,这些都是固定式的填料,需要固定在填料支架上面。仅凭顶部预留的小小的检修口(不应该叫检修口,只能叫观察口),均无法实现填料系统的检修和更换。
4、一体化污水处理设备质量无法把控,由于是厂家独立制作完成。
5、一体化污水处理设备为临时性,仅适用于小规模处理量(指:50吨∕日以下)。
三格化粪池厕所的结构原理
三格化粪池由相联的三个池子组成,中间由过粪管联通,主要是利用厌氧发酵、中层过粪和寄生虫卵比重大于一般混合液比重而易于沉淀的原理,粪便在池内经过30天以上的发酵分解,中层粪液依次由1池流至3池,以达到沉淀或杀灭粪便中寄生虫卵和肠道致病菌的目的,第3池粪液成为优质化肥。
注:使用本表时取值视情况而定,一般水量定额中餐较西餐大;用洗碗机较人工洗碗大。
本系列产品是配合主要厨具的辅助产品之一,主要功能是用来清洗蔬菜、工具等,是各厂矿、机关及宾馆,饭店大食堂的必备用品,依不同需要,大致分为小槽、中槽、大槽三种类型,其具体尺寸请参看表格,根据用户要求可带开生台,残食台,平台等设施。整体由不锈钢制成,外形美观、使用方便、易清洁、经济实惠、抗蚀防腐、经久耐用。本产品需要根据客户使用面积定型加工制造。
HYGUZ—Ⅲ型厨房隔油器由三个槽组成。当厨房排水流入*槽时,杂务框将其中的固体杂务(菜叶等)截流除去。进入第二槽后,利用密度差使油水分离。废水沿斜管向下流动,进入第三槽后从溢流堰流出,再经出水管排出。水中的油珠则沿斜管的上表面集聚向上流动,浮在隔油池的槽内,然后用集油管汇集排除或人工排除。
医院废水处理系统--- 逄总特点:
油水分离效率高,可去除油粒粒径在60vm以上的油粒;
停留时间短,一般不大于30min;
占地面积小,约占平流式隔油器池的1/4~1/3(处理水量相同时);
臭气较少;
斜管式除油效率是平流式的4—5倍。
二、 HY-WWS微型一体化污水处理系统
该技术和设备是本公司自行研制开发的生活污水处理器,其主要功能是使生活污水经厌氧+好氧处理后达到国家或地方排放标准。设备可以埋地。该技术和设备已在全国10多个工程中推广使用,得到用户一致好评。该设备的特点是:无须设置生化池,具有安装方便,使用简单的特点,大大降低了污水处理的建设造价。
技术特点
1、 采用先进CASS法(厌氧+好氧)处理工艺(SBR工艺的改进型)
2、 污泥产量少/无需污泥处理设备
3、 有机污染物去除率高/出水水质稳定/抗冲击负荷能力强
4、 脱氮除磷/出水可入天然水体
5、 埋于地下/不占地
6、 专门用于小流量污水处理
7、 运行费用低(每吨处理成本仅为0.45-0.5元)
8、 投资成本低(比传统工艺节约30%以上)
9、 安装简易/管理方便
10、 采用生物膜过滤技术,出水效果更好